首页> 外文OA文献 >Automating the Transition Between Sensorless Motor Control Methods for the NASA Glenn Research Center Flywheel Energy Storage System
【2h】

Automating the Transition Between Sensorless Motor Control Methods for the NASA Glenn Research Center Flywheel Energy Storage System

机译:NASA Glenn研究中心飞轮储能系统的无传感器电机控制方法之间的自动化转换

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The NASA Glenn Research Center (GRC) has been working to advance the technology necessary for a flywheel energy storage system for the past several years. Flywheels offer high efficiency, durability, and near-complete discharge capabilities not produced by typical chemical batteries. These characteristics show flywheels to be an attractive alternative to the more typical energy storage solutions. Flywheels also offer the possibility of combining what are now two separate systems in space applications into one: energy storage, which is currently provided by batteries, and attitude control, which is currently provided by control moment gyroscopes (CMGs) or reaction wheels. To date, NASA Glenn research effort has produced the control algorithms necessary to demonstrate flywheel operation up to a rated speed of 60,000 RPM and the combined operation of two flywheel machines to simultaneously provide energy storage and single axis attitude control. Two position-sensorless algorithms are used to control the motor/generator, one for low (0 to 1200 RPM) speeds and one for high speeds. The algorithm allows the transition from the low speed method to the high speed method, but the transition from the high to low speed method was not originally included. This leads to a limitation in the existing motor/generator control code that does not allow the flywheels to be commanded to zero speed (and back in the negative speed direction) after the initial startup. In a multi-flywheel system providing both energy storage and attitude control to a spacecraft, speed reversal may be necessary.
机译:在过去的几年中,NASA格伦研究中心(GRC)一直在努力提高飞轮储能系统所需的技术。飞轮具有高效率,耐用性和接近完全的放电能力,这是典型化学电池无法提供的。这些特性表明,飞轮是更典型的能量存储解决方案的有吸引力的替代品。飞轮还提供了将太空应用中现在两个独立的系统整合为一个系统的可能性:目前由电池提供的能量存储和目前由控制力矩陀螺仪(CMG)或反作用轮提供的姿态控制。迄今为止,NASA Glenn的研究工作已经产生了必要的控制算法,以演示以高达60,000 RPM的额定速度运行的飞轮,以及两个飞轮机的组合运行,以同时提供能量存储和单轴姿态控制。两种无位置传感器算法用于控制电动机/发电机,一种用于低速(0至1200 RPM),另一种用于高速。该算法允许从低速方法过渡到高速方法,但是最初并未包括从高速方法过渡到低速方法。这导致了现有电动机/发电机控制代码的局限性,即不允许在初次启动后将飞轮命令为零速度(并沿负速度方向返回)。在向航天器提供能量存储和姿态控制的多飞轮系统中,可能需要反转速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号